REMARK ABOUT THE SPECTRUM OF THE p-FORM LAPLACIAN UNDER A COLLAPSE WITH CURVATURE BOUNDED BELOW

نویسنده

  • JOHN LOTT
چکیده

We give a lower bound on the number of small positive eigenvalues of the p-form Laplacian in a certain type of collapse with curvature bounded below.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsing and the Differential Form Laplacian : the Case of a Singular Limit Space

We analyze the limit of the p-form Laplacian under a collapse with bounded sectional curvature and bounded diameter to a singular limit space. As applications, we give results about upper and lower bounds on the j-th eigenvalue of the p-form Laplacian, in terms of sectional curvature and diameter.

متن کامل

Collapsing and the Differential Form Laplacian : the Case of a Smooth Limit Space

We analyze the limit of the p-form Laplacian under a collapse, with bounded sectional curvature and bounded diameter, to a smooth limit space. As an application, we characterize when the p-form Laplacian has small positive eigenvalues in a collapsing sequence.

متن کامل

Comparison Theorem for Kähler Manifolds and Positivity of Spectrum

The first part of this paper is devoted to proving a comparison theorem for Kähler manifolds with holomorphic bisectional curvature bounded from below. The model spaces being compared to are CP, C, and CH. In particular, it follows that the bottom of the spectrum for the Laplacian is bounded from above by m for a complete, m-dimensional, Kähler manifold with holomorphic bisectional curvature bo...

متن کامل

On the Spectrum of a Finite-volume Negatively-curved Manifold

We show that a noncompact manifold with bounded sectional curvature, whose ends are sufficiently collapsed, has a finite dimensional space of square-integrable harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential spectra of a collection of ordinary diff...

متن کامل

Remark about Scalar Curvature and Riemannian Submersions

We consider modified scalar curvature functions for Riemannian manifolds equipped with smooth measures. Given a Riemannian submersion whose fiber transport is measure-preserving up to constants, we show that the modified scalar curvature of the base is bounded below in terms of the scalar curvatures of the total space and fibers. We give an application concerning scalar curvatures of smooth lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002